Multiple Sclerosis & Peripheral Neuropathy

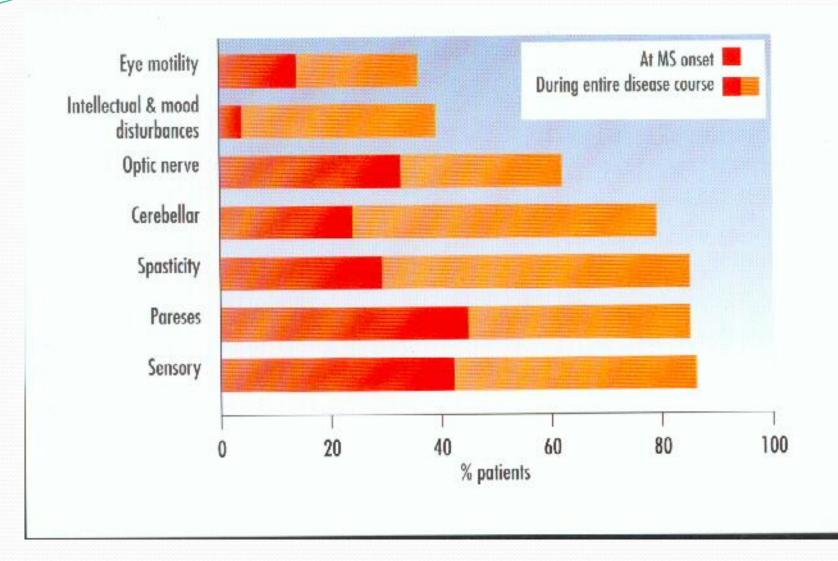
Dr M S Chong Consultant Neurologist

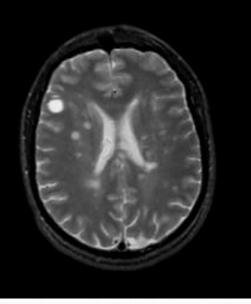
The National Hospitals for Neurology and Neurosurgery London SPIRE Alexander Hospital, Chatham. Kent King Edward VII Hospital London

MS Epidemiology

- Annual incidence UK and US 1-2/100,000 per year
- Prevalence: 1 in 800 of population
- Relapsing Remitting 80-90%
 - Most common women age 30
 - F:M ratio 3:1
- Primary Progresssive 10-20%
 - Most common age 40 at diagnosis
 - Equal gender ratio

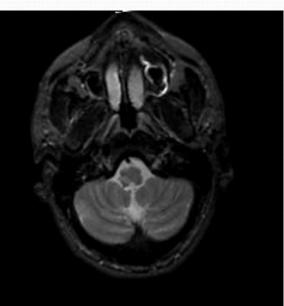
MS Epidemiology

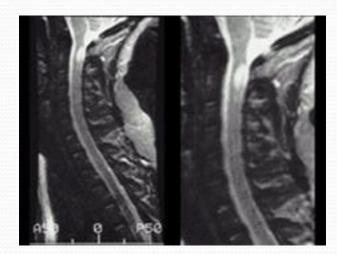

- Geographical variation: distance from equator
- Increasing incidence or just better diagnosis?
- Vitamin D and UV exposure? (not in Alaska!)
- Viruses? EBV/ HHV 6/ measles/ mumps
- HLA subtype: there is a genetic link (Vikings!)
- MZ twins 25% vs 3-5% DZ twins
- Smoking: increased risk? Just more severe?

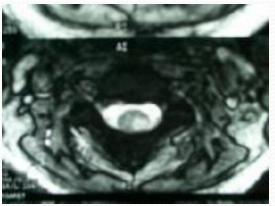

RR MS Diagnosis

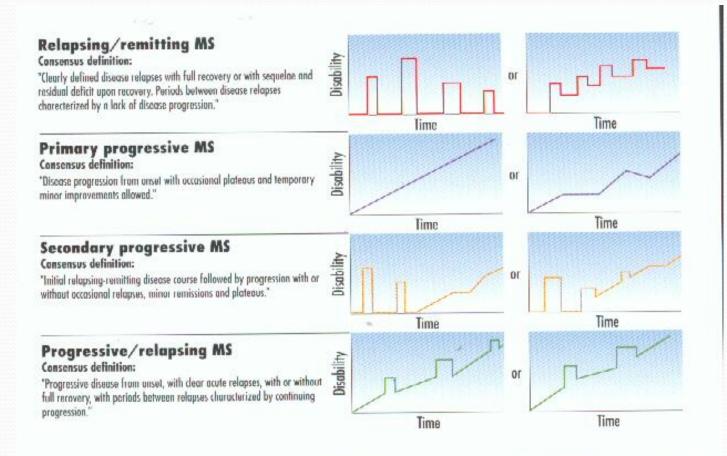

- Still clinical: "dissemination in time and place"
- Course of illness:
 - Subacute over hours to days
 - Symptoms maximum severity at 4 weeks
 - spontaneous remissions
- Investigations to confirm:
 - MRI Scans: brain with enhancement and cord
 - Lumbar Puncture: Oligoclonal bands (less infratentorial lesions in those negative)
 - Evoked potentials (single test only provide evidence of dissemination in space)

RR MS Diagnosis

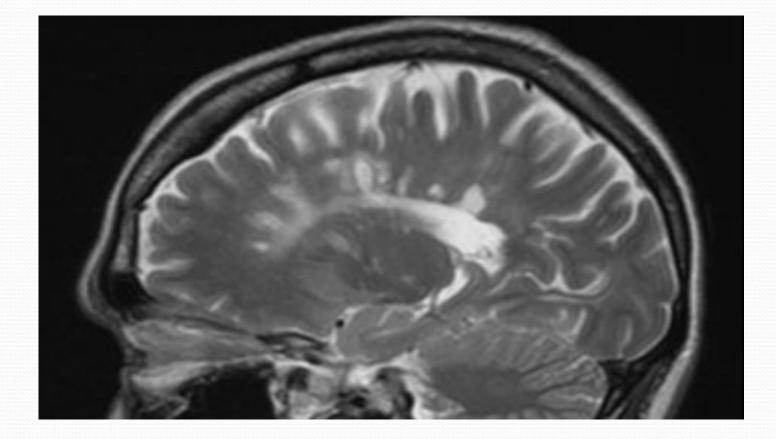

- Difficult:
 - Varied symptoms at onset and subsequently
 - Years before a definite diagnosis is made
- Common Presentations:
 - Optic neuritis : more common in those presenting below 30 yrs
 - Brainstem and cerebellar syndromes including TN
 - Spinal cord: bladder dysfunction and spasticity
 - Non-specific: cognitive decline and fatigue
- "Radiological" RRMS
 - Enhancement of some lesions






Atypical RR MS

- Atypical lesions
 - Balo's concentric sclerosis
 - Large enhancing lesions mimicking lymphoma or gliomas
- Children
 - Encephalopathy
 - Seizures

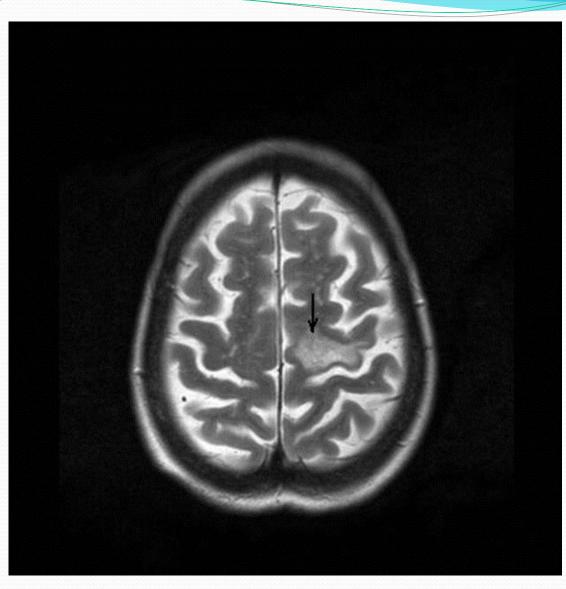

PP MS Diagnosis

- More insidious symptom onset over months to years
- Common presentation:
 - Spastic paraparesis
 - Hemiparesis less common
 - Progressive cerebellar syndrome
 - Progressive visual loss
 - Dementia
- Less MRI brain lesions
- Oligoclonal bands less common in CSF

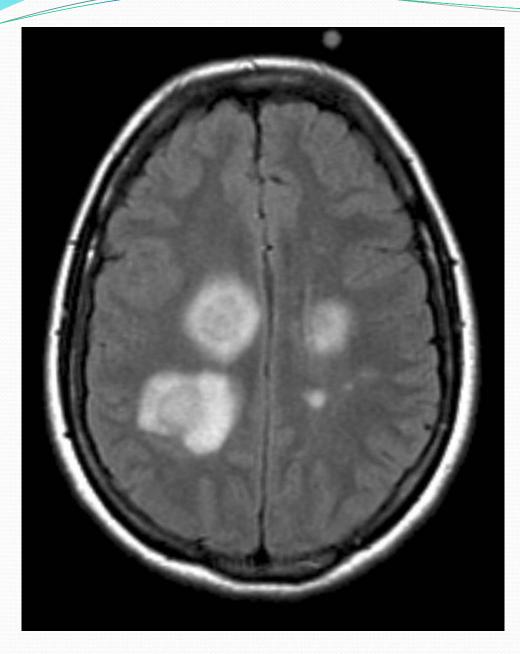
MS: different course of illness

Typical MRI images of MS

Neuromyelitis Optica (Devic's)

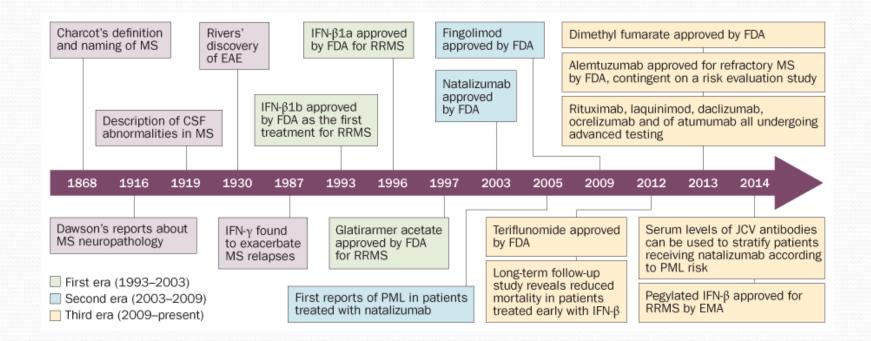

- More common Asians and Africans
- Affects:
 - Visual pathway- long lesions, less improvement
 - Spinal cord- more than 3 vertebral lesions, central
 - Brainstem- around III and IV ventricles
- Disability from multiple relapses-no 2° progression
- Aquaporin 4 (70%) or MOG
- Other auto-immune disorders: SLE, Sjogren's
- Different treatment strategies

ADEM


- Monophasic illness
- May precede an illness
- Encephalopathy strict diagnostic criteria:
 - Cognitive
 - Behavioural
 - Seizures
- Prognosis different

MS Differential Diagnosis

- Congenital:
 - Leucodystrophies, mitochondrial, Fabry's
- Acquired:
 - Infective: cystercercosis, Whipples', toxoplasmosis, Lyme, PML, TB
 - Inflammatory: SLE, sarcoid, Behcet's CNS vasculitis, anti-Phospholipid syndrome, Susac's
 - Neoplastic: lymphoma, glioma, secondaries
 - Vascular: Moya-Moya, CADASIL,
 - Metabolic: B12, Copper



Progressive Multifocal Leucoencephalopathy

Acute Disseminated Encephalomyelitis (ADEM)

MS time line

Vitamin D and MS

- Vit D deficiency is a risk factor ?early
- Possible mechanisms:
 - Vitamin D receptors on lymphocytes
 - Vitamin shifts from Th1 to Th2 cytokines
- Vit D levels measured at baseline, 6, 12, 24 months
 - 468 patients
 - 20ng/mL increment in average serum vitamin D level predicted:
 - 57% reduction in new active lesions
 - 25% lower yearly increase in T2 lesion volume
 - 57% lower relapse rate

Ascherio et al. JAMA Neurol. 2014 Mar;71(3)306-14.

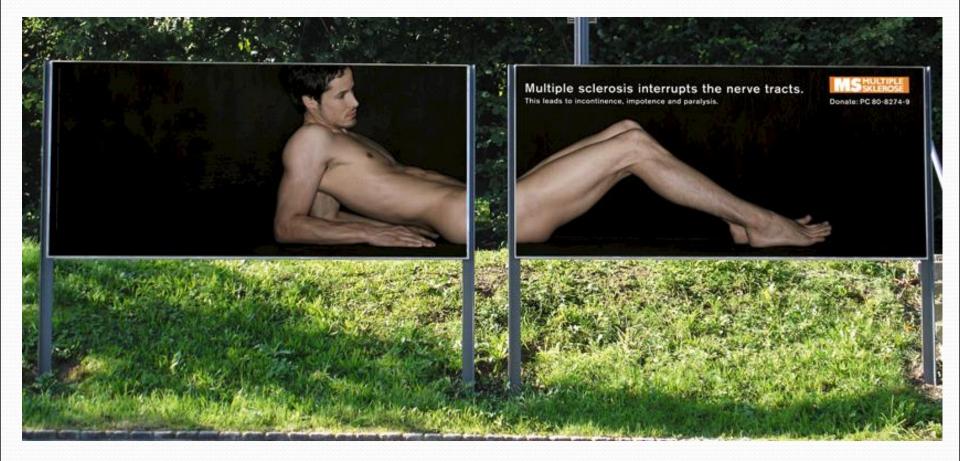
Disease Modification

- Arrest the disease process
 - Slow down progression
 - Alter Outcome
- Aim to reduce:
 - Relapse rate
 - Disability

80% will be severely disabled within 10 years Average life expectancy reduced by 10 years

Achieve NEDA (No Evident Disease Activity)

Disease Modifying Therapy


- •Interferon beta-1b, subcutaneous (Betaseron)-1993
- Interferon beta-1a, intramuscular (Avonex)--1996
- Glatiramer acetate, sq (Copaxone)--1996
- Mitoxantrone IV (Novantrone)--2000
- Interferon beta-1a, subcutaneous (Rebif)--2002
- •Natalizumab IV (Tysabri)--2006
- Interferon beta-1b (Extavia)--2009
- Fingolimod (Gilenya)--2010
- Teriflunomide (Aubagio)--2012
- Dimethyl Fumarate (Tecfidera)--2013
- Peginterferon beta-1a (Plegridy)--2014
- Alemtuzumab (Lemtrada)--2014

Disease stratification?

- Multiple relapses (2 in 1 year) /incomplete recovery
- MRI showed new lesions
- Poor prognosis:
 - Male
 - Older age onset
 - Multifocal relapses
 - Motor, cerebellar or bladder dysfunction
 - More than 2 enhancing or 9 T2 lesions on MRI
 - Evoked potentials
 - Thin peri-papillary retinal layer
 - Positive OCB

Symptomatic Relieve

- Corticosteroids improve symptoms during relapse of RRMS
- Fatigue: efficacy of amantadine, modafinil, behaviour modification, exercise unclear
- Spasticity: Botulinum toxin plus physiotherapy Role of oral anti-spasmodics?
- In-patient rehabilitation improves function
 - ? Outpatient Physiotherapy

Peripheral Neuropathy

It is very common

- Diabetes: 3% within 5 yrs diagnosis but 15% at 20 yrs
- Carpal Tunnel Syndrome 6% of all women
- Toxic-
 - Alcohol: 25% alcoholics
 - HIV and cancer chemotherapy: virtually all?
- Can be confusing to the non-specialist
- May hide underlying problems:
 - Systemic disorder: diabetes, Vitamin deficiency
 - Paaraneoplastic: MGUS and underlying cancer

Types of Neuropathy

- Die back:
 - Length dependent
 - Glove and stocking sensory loss
 - Most distal muscles weak
- Multiple Mononeuropathies:
 - Nerve Specific
 - Discreet areas of sensory loss
 - Only muscles innervated by nerve is weak

Approach to Neuropathy

- 1. Which system affected?
 - Sensory, motor, autonomic or combinations
- 2. What distribution?
 - Distal, proximal, nerve pattern
- 3. What type of loss
 - Negative as well as positive symptoms
- 4. Any other systems affected?
 - Upper motorneurone/movement disorder
- 5. What course?
 - Acute, subacute, chronic
- 6. Family History?

Which system?

Pure Motor

- Motorneuron disease or multifocal motorneuropathies
- Sensory plus autonomic
 - Diabetes or amyloidosis
 - Acutely AIDP
- Sensory
 - Depends on pattern

Distribution

- Distal
 - Mainly die back neuropathy
 - Rarely with sensory forms of inflammatory neuropathies
- Proximal
 - Axial involvement: MND and CIDP
- Distal and proximal
 - AIDP and CIDP
- Nerve pattern
 - Radiculopathy, plexopathy or Multiple Mononeuropathies

Type of sensory change

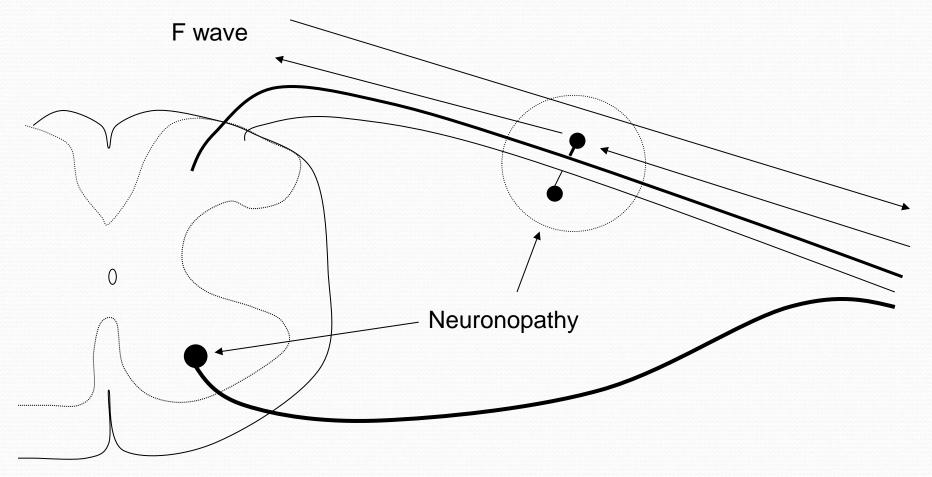
- Pain and temperature loss
 - Small fibre neuropathies: diabetes, amyloid, toxic
- Painful
 - Diabetes, toxic, amyloid, Fabry's, AIDP
- Joint position sense (sensory ataxia)
 - Sjogren's, cisplatin toxicity, anti-Hu paraneoplastic syndrome
 - IgM paraproteinaemia and AIDP causing sensory ataxia

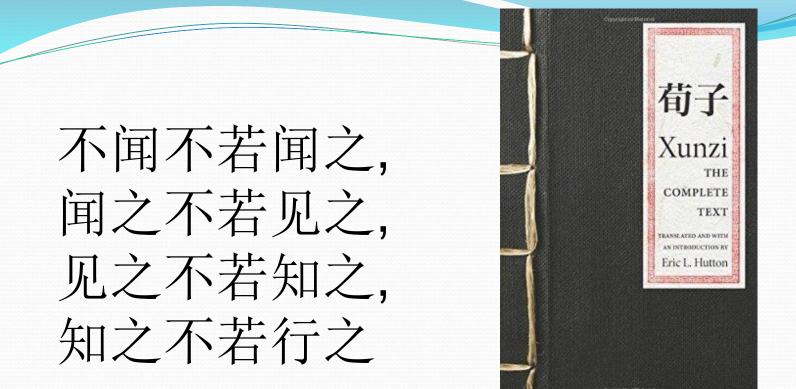
Other systems?

- Upper motorneurone:
 - Multiple radiculopathies and myelopathy
 - Infection: HIV and Syphyllis
 - Vitamin E and B12 deficiency
 - Copper
 - Frederich's ataxia
- Movement disorders:
 - Painful feet moving toes, IgM paraproteinaemia

Tempo of onset

- Acute:
 - AIDP, vasculitic neuropathies
- Sub-acute:
 - Paraneoplastic
 - Some toxic: arsenic, thallium
 - Compressive
- Chronic:
 - Majority of metabolic neuropathies
 - CIDP


Family History


- Can be very difficult to determine
- Examination better than symptoms:
 - Pes cavus, wasting
 - Weakness: often put down to "arthritis"
 - Sensory loss: often not noticeable because gradual onset
 - Amyloid neuropathy
 - HSAN

Investigations

- First line:
 - FBC, U+E's, LFT, TFT, B12/folate, sugar, protein electroporesis
- Additional:
 - Other Bloods
 - EMG/NCS
 - Autonomic function tests
 - Nerve Biopsy
 - Genetic testing

Neurophysiology limitations

Not having heard something is not as good as having heard it; having heard it is not as good as having seen it; having seen it is not as good as knowing it; knowing it is not as good as putting it into practice.

> Xunzi by Xun Kuang BC 312-280