COMMON PAINFUL SHOULDER CONDITIONS

MB, LRCS, LRCP, MSc (Orth), FRCS, FRCS Ed (Orth)

TP Selvan

Overview

- Rotator Cuff Tears
- Shoulder Instability
- Frozen Shoulder

Rotator Cuff

4 components

 Supraspinatus, Infraspinatus,

Teres Minor

- Attached to GT, commonly referred as rotator cuff tears.
- Elevate, rotate the humerus
- Run under the acromion, vulnerable to damage
- Subscapularis
 - Attached to LT, largest and strongest cuff muscle
 - @53% of total cuff strength
 - Internal rotator, key in lifting across chest

Rotator Cuff tear

Several Classifications, commonly used

- Partial or Full thickness
- Size of tear
 - Small (<1cm)</p>
 - Medium (1-3cm)
 - Large (>3cm)
 - Massive (>5cm)
- Side

- Articular
- Bursal

Rotator Cuff tears

Cause

- Injury-lift or catch a heavy object, FOOSH
- Overuse, impingement
- wear and degrade with age liable to rupture

Symptoms

- painful, weak shoulder and decreased ROM
- Night pain common, often radiating down the arm.
- Subscap tears more painful as often associated with LHB tears and dislocation

Clinical tests for Rotator Cuff

- Several tests, Over 100!! described, can be confusing?? Adopt simple approach and common tests
- Impingement
 - Neers sign, test
 - Hawkin's-kennedy test
 - Copelands
- RCT
 - Supraspinatus, Infraspinatus, Teres minor
 - Empty can(Jobes) / Full can test (SS)
 - Ext Rot lag sign (IS)
 - Hornblower test (IS,TM) massive tears
 - Subscapularis
 - Gerbers lift off, Napolean belly press
 - Int Rot Lag sign

Rotator Cuff tears-Investigations

Ultrasound Scan

- One stop clinic
- Accurate, dynamic and cost effective
- However, operator dependant

MRI Scan

- Expensive and less accessible,
- Quality of the muscles and fatty infiltration
- Other intra-articular pathology

Rotator Cuff tears-Investigations

- MR arthrography
 - most sensitive and specific technique for diagnosing both FT and PT RCT.
 - US and MRI are comparable in both sensitivity and specificity
 - de Jesus Jo, AJR Am J Roent.2009,a meta-analysis

US Scan

- acceptable sensitivity and specificity.
- superior for the detection of FT compared to PT tears.
 - Smith TO (Clin Radiol. 2011) a syst. rev and meta-analysis

Clinical tests

- The use of any single test to make a pathognomonic diagnosis cannot be unequivocally recommended.
- Support for stressing a comprehensive clinical examination including history and physical examination.
 - Hegedus EJ, Br J Sports Med. 2012 (Syst. Review & Metaanalysis)

- Insufficient evidence upon which to base selection of physical tests for shoulder impingements, and local lesions of bursa, tendon or labrum that may accompany impingement, in primary care.
- Extreme diversity in the performance and interpretation of tests.
 - Hanchard NC , Cochrane Database Syst. Rev. 2013

Rotator Cuff tears

- **Do they progress?** (Yamaguchi JSES 2001)
 - 50% tears progress if pts symptomatic & <20% tears if asymptomatic</p>
- Is age, gender, side or cuff thickness related to symptoms (Yamaguchi JBJS 2006)
 - Av age 48.7=no tear, 58.7=U/L tear, 67.8=B/L tear
 - 50% likelihood of B/L tears > 66years
 - If symptomatic one side 35% chance of C/L tear
 - Symptomatic tears significantly larger
 - NO evidence of spontaneous healing

RCT- Non-operative Rx

- I. Painkillers and anti-inflammatory medications
- 2. Physiotherapy

- 3. Cortisone steroid injections
 - Reduces inflammation and control the pain.
 - Avoid repeated steroid injections in the presence of a tendon tear, as this may weaken the tendon further.
- Outcome following Non-op Rx (Maman JBJS2009)
 - >50% FT and @8% PTRCTs progressed
 - 17% deterioration if <60 yrs, 54% if >60 yrs
 - Fatty infiltration results in increase tear size

RCT - Operative Rx

Single vs. Double row (DeHaan AM AJSM 2012)

- Single-row repairs did not differ from the double-row repairs in functional outcome scores
- Trend toward a lower retear rate in DR , although the data did not reach statistical significance
- All arthroscopic vs. Mini-open repair (van der Zwaal P Arthroscopy 2013), (Kim SH Arthroscopy 2003)
 - Functional outcome, pain, range of motion, and complications do not significantly differ
 - Patients do attain the benefits of treatment somewhat sooner
 - Surgical outcome depended on the size of the tear, rather than the method of repair

Partial Thickness RCT

- Articular side (PASTA) or bursal surface
- O/E Like impingement, strength often reasonable
- Pre-op diagnosis difficult, MRI inconclusive
- Beware young patient with PTRCT, other aetiology than impingement
- Initial conservative Rx appropriate

Partial Thickness RCT

- The "50% rule" (Pedowotz RA , Arthroscopy 2012)
 - Little scientific information is available to support the 50% rule
- Significant PT tears need repair, not debridement (Weber OCNA, Arth 1999), (Kartus Arth 2006)
 - 1 in 5 (18%) re-op rate with debridement, progression to FT tears not uncommon
 - Acromioplasty and cuff debridement does not protect tear

Massive Cuff Tears

- More common in older people, unusual under 60 years.
- In patients with cuff degeneration
- Disabling pain and weakness, pseudo paralysis
- Marked atrophy and fatty infiltration poor clinical outcomes

Massive Cuff Tears - Rx

Non-op

- Injection
- Deltoid rehab prog

Operative

- SAD, LHB tenotomy, Debridement
- SS nerve ablation
- Tendon transfers (Younger patient with irreparable RCT)
- Reverse Shoulder Replacement

Shoulder Instability

Glenohumeral stabilisers

Static restraints

- Glenohumeral ligaments (below)
- Glenoid labrum (below)
- Articular congruity and version
- Negative intraarticular pressure

Dynamic restraints

- Rotator cuff muscles
 - the primary biomechanical role of the rotator cuff is stabilizing the glenohumeral joint by compressing the humeral head against the glenoid
- Biceps
- Periscapular muscles

Dislocation Categories

1.Traumatic Dislocation

- A Bankart lesion is the most common injury but other injuries can occur
- HAGL tear

- Bony Bankart
- Hill-Sachs lesion
- **2.** Atraumatic dislocation associated with joint laxity
- 3. Positional Non-traumatic dislocation

'abnormal muscle patterning' (party tricks)

Clinical tests – Instability

Anterior instability

- anterior Apprehension
- Jobe Relocation (Fulcrum Test)
- anterior Drawer Test
- anterior Load and Shift

Posterior instability

- posterior Apprehension test
- posterior Drawer Test
- posterior Load and Shift

Inferior Laxity

- Sulcus Sign

Instability Investigations

Plain X-ray

Initial imaging

- MR arthrogram
 - Imaging modality of choice to evaluate the labrum
 - Associated ST lesions

CT arthrogram

- Detection of bony injuries like glenoid rim # or HAGL
- Also capsuloligamentous lesions

Shoulder Instability Rx

Non-op Rx

- What position of immobilisation? ER or IR
 - Liavaag S JBJS(Am) 2011
 - Immobilization in ER does not reduce the rate of recurrence for patients with first-time traumatic anterior shoulder dislocation
- Physiotherapy to train the shoulder muscles to control the shoulder correctly and prevent further instability

Operative Rx

- A number of procedures are available depending on the causes and findings on investigations.
 - arthroscopic Procedures
 - Open Shoulder Procedures
 - Latarjet procedure for glenoid bone loss or
 - open capsular repair for HAGL lesions

Shoulder Instability Rx

Arthroscopic Stabilisation (Bankart Repair)

Repairing the over stretched or torn <u>labrum</u> and capsule

Latarjet-Bristow Procedure

(transfer of the coracoid with it's attached muscles to the deficient area over the front of the glenoid)

- Success due to the 'triple effect' described by Patte.
 - 1) Increase the glenoid contact surface area;
 - 2) The conjoint <u>tendon</u> reinforces the <u>inferior subscapularis</u> and antero<u>inferior</u> capsule (Sling effect)
 - 3) Capsular repair

Final Reconstruction

Frozen shoulder

- Frozen Shoulder is an extremely painful condition
- Often starts acutely, but may be triggered by a mild injury to the shoulder.
- Frozen shoulder may be associated with diabetes, high cholestrol, heart disease and Dupuytrens contracture.
- The capsule and its <u>ligaments</u> becomes inflamed, swollen, red and contracted. The normal elasticity is lost

Frozen Shoulder-Stages

Three stages

1)Freezing phase:

- Pain increases with movement and is often worse at night.
- Progressive loss of motion with increasing pain.
- Lasts approx. 2 to 9 months.

2)Frozen phase:

- Pain begins to diminish,
- ROMmuch more limited
- This stage may last 4 to 12 months.

3)Thawing phase:

- May begin to resolve.
- Gradual restoration of motion over the next 12 to 42 months

Frozen shoulder Rx

- Improve over 2-4 years after onset.
- Painful & stiff shoulder generally require treatment.

Rx modalities

- Physiotherapy
- Analgesics & Anti-inflammatories
- Injections reduce inflammation and provide pain relief
- Hydrodilatation Procedure
- MUA & Injection
- Surgery Arthroscopic Capsular Release
 - . Intensive physiotherapy is essential after the surgery.

Frozen Shoulder Capsular Release

- Over 80% success and the freedom from pain is quicker than MUA.
- Diagnose other associated pathologies
- Capsular release is safer and more effective than MUA for people who have developed a resistant stiff (frozen) shoulder after injury, trauma or fractures, as well as for diabetics.

